Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients

نویسندگان

  • Thomas Y. Hou
  • Xiao-Hui Wu
  • Zhiqiang Cai
چکیده

We propose a multiscale finite element method for solving second order elliptic equations with rapidly oscillating coefficients. The main purpose is to design a numerical method which is capable of correctly capturing the large scale components of the solution on a coarse grid without accurately resolving all the small scale features in the solution. This is accomplished by incorporating the local microstructures of the differential operator into the finite element base functions. As a consequence, the base functions are adapted to the local properties of the differential operator. In this paper, we provide a detailed convergence analysis of our method under the assumption that the oscillating coefficient is of two scales and is periodic in the fast scale. While such a simplifying assumption is not required by our method, it allows us to use homogenization theory to obtain a useful asymptotic solution structure. The issue of boundary conditions for the base functions will be discussed. Our numerical experiments demonstrate convincingly that our multiscale method indeed converges to the correct solution, independently of the small scale in the homogenization limit. Application of our method to problems with continuous scales is also considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mixed multiscale finite element method for elliptic problems with oscillating coefficients

The recently introduced multiscale finite element method for solving elliptic equations with oscillating coefficients is designed to capture the large-scale structure of the solutions without resolving all the fine-scale structures. Motivated by the numerical simulation of flow transport in highly heterogeneous porous media, we propose a mixed multiscale finite element method with an over-sampl...

متن کامل

Superconvergence Analysis of a Multiscale Finite Element Method for Elliptic Problems with Rapidly Oscillating Coefficients

A new multiscale finite element method is presented for solving the elliptic equations with rapidly oscillating coefficients. The proposed method is based on asymptotic analysis and careful numerical treatments for the boundary corrector terms by virtue of the recovery technique. Under the assumption that the oscillating coefficient is periodic, some superconvergence results are derived, which ...

متن کامل

High-Order Multiscale Finite Element Method for Elliptic Problems

In this paper, a new high-order multiscale finite element method is developed for elliptic problems with highly oscillating coefficients. The method is inspired by the multiscale finite element method developed in [3], but a more explicit multiscale finite element space is constructed. The approximation space is nonconforming when oversampling technique is used. We use a PetrovGalerkin formulat...

متن کامل

A Multiscale Finite Element Method for Numerical Homogenization

This paper is concerned with a multiscale finite element method for numerically solving second order scalar elliptic boundary value problems with highly oscillating coefficients. In the spirit of previous other works, our method is based on the coupling of a coarse global mesh and of a fine local mesh, the latter one being used for computing independently an adapted finite element basis for the...

متن کامل

Reduced Basis Multiscale Finite Element Methods for Elliptic Problems

JAN S. HESTHAVEN ∗, SHUN ZHANG † , AND XUEYU ZHU ‡ Abstract. In this paper, we propose reduced basis multiscale finite element methods (RB-MsFEM) for elliptic problems with highly oscillating coefficients. The method is based on multiscale finite element methods with local test functions that encode the oscillatory behavior ([4, 14]). For uniform rectangular meshes, the local oscillating test f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1999